
J Math Chem (2014) 52:1171–1181
DOI 10.1007/s10910-014-0323-3

BRIEF COMMUNICATION

Optimal descriptors as a tool to predict the thermal
decomposition of polymers

Alla P. Toropova · Andrey A. Toropov · Valentin O. Kudyshkin ·
Danuta Leszczynska · Jerzy Leszczynski

Received: 6 January 2014 / Accepted: 28 January 2014 / Published online: 9 February 2014
© Springer International Publishing Switzerland 2014

Abstract Quantitative structure-property relationship for the thermal decomposition
of polymers is suggested. The data on architecture of monomers is used to represent
polymers. The structures of monomers are represented by simplified molecular input-
line entry system. The average statistical quality of the suggested quantitative structure-
property relationships for prediction of molar thermal decomposition function Yd,1/2
is the following: r2 = 0.970 ± 0.01 and RMSE = 4.71 ± 1.01 (K × kg × mol−1).
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1 Introduction

Polymers are among the species widely used in various commercial products. Their
thermal stability is a key characteristic for many categories of their applications [1–5].
Thermal stability can be expressed by the temperature of half decomposition Td,1/2,
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which is defined as the temperature at which the loss of weight during pyrolysis (at a
constant rate of temperature rise) becomes reduced to 50 % of its initial values. The
phenomenon of thermal mass reduction of polymer also can be described with the
molar thermal decomposition function Yd,1/2 that can be calculated with an equation:
Yd,1/2 = Td,1/2/M (M is the molecular weight per repeating unit) [6].

The thermal decomposition (Td,1/2) values are depended on molecular structures of
polymers. The experimental determination of these characteristics involves consider-
able resources including time and equipment. As a cost efficient alternative, quantita-
tive structure-property relationships (QSPR) approaches become an attractive way for
the evaluation of the thermal decomposition properties of polymers. In fact, the QSPR
analysis of physicochemical parameters for polymers [7–14] is similar to “classic”
QSPR analysis, but as a rule the basic representation of polymers are their monomer
units [15–18].

The aim of the present study is evaluation of optimal descriptors (calculated with
features of monomer) as a tool for QSPR analysis of data on molar thermal decompo-
sition function of polymers. Such approach, if proves to be feasible, promises devel-
opment of fast and inexpensive alternative to costly experimental studies.

2 Method

2.1 Data

The numerical data on the molar decomposition function (K × kg × mol−1) for 72
polymers (Table 1) are taken from the literature [6]. The first distribution of data
into the training set and validation set is carried out following the scheme from pre-
vious studies [6]. However, in our work the training set is separated into the sub-
training set and calibration set which are necessary to perform the QSPR analysis
by the CORAL software [19,20]. There are two outliers in the model described in
the previous work [6]. The first distribution (n = 70) does not contain these polymers:
these are poly(vinyl-trimethylsilane) and poly(pentachlorophenyl-methacrylate) [6].
Since a QSPR/Quantitative structure-activity relationship (QSAR) model is a “random
event” [21], we have tested our approach with three additional random distributions
into “visible” the sub-training and the calibration sets and “invisible”, the external
validation set. No information about polymers from the validation set is involved in
building up these models (distributions 2–4). These three splits contain the above
mentioned two outliers (n = 72).

2.2 Optimal descriptors

The optimal descriptors used as a representation of monomers for polymers are cal-
culated as the following:

DCW(T, N) =
∑

CW(Sk) (1)
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Table 1 Polymers and SMILES which are used for representation of the molecular structure of monomers

ID Name of polymer SMILES for representation of the monomer

1 Poly(vinyl-benzoate) c1(C(OC=C)=O)ccccc1

2 Poly(vinyl-methyl-ether) C(OC)=C

3 Poly(vinyl-ethyl-ether) O(CC)C=C

4 Poly(vinyl-bromide) C(=C)Br

5 Poly(vinylidene-chloride) C(=C)(Cl)Cl

6 Poly(vinyl-sec-butyl-ether) C(C(C)C)OC=C

7 Poly(vinylidene-bromide) C(=C)(Br)Br

8 Poly(vinyl-n-butyl-ether) C(CCC)OC=C

9 Poly(vinyl-cyclopentane) C1CCC(C1)C=C

10 Poly(vinyl-propionate) C(OC=C)(CC)=O

11 Poly(vinyl-pivalate) C=COC(CCCC)=O

12 Poly(vinyl-sulfonic-acid) C=CS(=O)(=O)O

13 Poly(vinylidene-fluoride) C(=C)(F)F

14 Poly(p-methyl-styrene) c1(ccc(cc1)C)C=C

15 Poly(o-methyl-styrene) c1(c(cccc1)C)C=C

16 Poly(p-methoxy-styrene) c1(ccc(OC)cc1)C=C

17 Poly(p-chloro-styrene) c1(ccc(Cl)cc1)C=C

18 Poly(o-chloro-styrene) c1(c(cccc1)Cl)C=C

19 Poly(p-bromo-styrene) c1(ccc(Br)cc1)C=C

20 Poly(p-t-butyl-styrene) c1(ccc(C=C)cc1)C(C)(C)C

21 Poly(ethyl-acrylate) C(=O)(OCC)C=C

22 Poly(n-butyl-acrylate) C(=O)(OCCCC)C=C

23 Poly(ethyl-methacrylate) C(OCC)(C(C)=C)=O

24 Poly(t-butyl-methacrylate) C(=O)(OCCCC)C(=C)C

25 Poly(sec-butyl-methacrylate) C(C(=C)C)(O[C@@H](CC)C)=O

26 Poly(n-butyl-methacrylate) C(=O)(OCCCC)C(=C)C

27 Poly(2-ethylbutyl-methacrylate) O=C(OCC(CC)CC)C(=C)C

28 Poly(cyclohexyl-methacrylate) C1(OC(=O)C(=C)C)CCCCC1

29 Poly(n-hexyl-methacrylate) O(C(=O)C(=C)C)CCCCCC

30 Poly(benzyl-methacrylate) c1(COC(C(C)=C)=O)ccccc1

31 Poly(n-octyl-methacrylate) O(C(C(C)=C)=O)CCCCCCCC

32 Poly(2-hydroxyethyl-methacrylate) C(=O)(C(=C)C)OCCO

33 Polyisobutylene C(C)(C)=C

34 Poly(1,2-butadiene) C(=C=C)C

35 Poly(1-butene) C(C=C)C

36 Poly(acrylic-acid) C(C=C)(O)=O

37 Polymethacrylonitrile C(C#N)(C)=C

38 Poly(methacrylic-acid) C(=C)(C(=O)O)C

39 Poly(methyl-ethacrylate) C(C(C)=C)(OC)=O

40 Poly(methyl-a-chloroacrylate) C(C(=C)Cl)(OC)=O
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Table 1 continued

ID Name of polymer SMILES for representation of the monomer

41 Polyacrylamide C(C=C)(N)=O

42 Poly(4-methyl-1-pentene) C(C(C)C)C=C

43 Poly(vinyl-methyl-ketone) C(C=C)(C)=O

44 Poly(1-pentene) C(CC)C=C

45 Poly(1-hexene) C(CC=C)CC

46 Poly(vinyl-methyl-sulfide) C(=C)SC

47 Poly(methyl-a-cyanoacrylate) C(C(OC)=O)(C#N)=C

48 Poly(2-vinyl-thiophene) C=Cc1cccs1

49 Poly(vinyl-n-butyl-sulfide) C(CC)CS

50 Poly(phenyl-methacrylate) O=C(Oc1ccccc1)C(=C)C

51 Poly(N-vinyl-phthalimide) O=C1N(C(=O)c2ccccc12)C=C

52 Poly(a-naphthyl-methacrylate) C(C(=C)C)(Oc1cc2ccccc2cc1)=O

53 Poly(pentabromophenyl-methacrylate) c1(c(c(Br)c(c(c1Br)Br)Br)Br)OC(C(=C)C)=O

54a Poly(vinyl-trimethylsilane)b C([Si](C)(C)C)=C

55a Poly(pentachlorophenyl-methacrylate)b Clc1c(OC(=O)C(=C)C)c(Cl)c(Cl)c(Cl)c1Cl

56 Poly(vinyl-chloride) C(=C)Cl

57 Polyethylene C=C

58 Poly(vinyl-acetate) O(C(C)=O)C=C

59 Poly(vinyl-cyclohexane) C1(CCCCC1)C=C

60 Poly(vinyl-alcohol) C(=C)O

61 Poly(N-vinyl-pyrrolidone) N1(C(=O)CCC1)C=C

62 Poly(a-vinyl-naphthalene) c12c(C=C)cccc1cccc2

63 Poly(N-vinyl-carbazole) c12c3c(cccc3)n(c1cccc2)C=C

64 Polystyrene c1(ccccc1)C=C

65 Poly(a-methyl-styrene) c1(ccccc1)C(C)=C

66 Poly(methyl-acrylate) C(=O)(C=C)OC

67 Poly(methyl-methacrylate) C(C(C)=C)(OC)=O

68 Polypropylene C(C)=C

69 Poly(vinyl-fluoride) C(=C)F

70 Polyacrylonitrile C(C#N)=C

71 Poly(o-vinyl-pyridine) c1(ccccn1)C=C

72 Poly(m-methyl-styrene) c1(cc(ccc1)C)C=C

a Polymers #54 and #55 are outliers in work [6]

where Sk is the simplified molecular input-line entry system (SMILES)-atom: it one
or two characters from SMILES string, two characters are used only if their separately
examination is impossible, e.g. ‘Cl’ (for chlorine atom), ‘Br’ (for bromine atom), but
majority of SMILES-atoms are one symbol (e.g. ‘(’,‘=’,‘C’,‘N’,etc. [20]); CW(Sk)

represents the correlation weight of Sk; the numerical data on the correlation weights
are calculated by the Monte Carlo method [20]; the T is the threshold i.e. the minimal
number of Sk in the training set, e.g. if T = 1, all Sk which are absent in the training
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set will be characterized by the correlation weight fixed as zero; N is the number of
epochs of the Monte Carlo optimization [20].

The correlation coefficient between the optimal descriptor DCW(T,N) and molar
decomposition Yd,1/2 is a mathematical function of the threshold (T), the number
of epochs of the Monte Carlo optimization (N), and the list of correlation weights
{CW(Sk)}:

R2 = F[T, N, {CW(Sk)}] (2)

In order to define the model, it is necessary to select T* and N* together with
{CW*(Sk)} which give maximum of correlation coefficient between DCW(T*,N*)
and Yd,1/2 for the calibration set:

R2∗
calibration = F[T*, N*, {CW*(Sk)}] : R2∗

calibration = Max R2
calibration (3)

Fig. 1 The scheme of definition of preferable T* (threshold) and N* (number of epochs of the Monte Carlo
optimization)
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Figure 1 shows the essence of the Monte Carlo optimization with various T (1–5)
and N (1–30). It is to be noted, correlation coefficients between descriptor and Yd,1/2
for the sub-training and calibration sets do vary during the optimization by different
ways (Fig. 1).

Having the numerical data on the T*, N*, and {CW ∗ (Sk)} one can calculate
DCW(T*, N*) for all polymers and calculate (using data on the sub-training set) by
the Least squares method the model:

Yd,1/2 = C0 + C1 × DCW(T*, N*) (4)

The predictability of the model calculated with Eq. 4 should be validated with the
external validation set.

3 Results and discussion

The approach described in the work [20] resulted in the following models for four
distributions of the data into the sub-training, calibration, and validation sets:

Distribution 1

Yd,1/2 = 5.7455 (±0.2482) + 11.1978 (±0.0418) ∗ DCW(1, 21)

n = 34, R2 = 0.9974, q2 = 0.9966, s = 2.24, F = 12319 (sub-training set)

n = 19, R2 = 0.9272, s = 6.47, R2
m = 0.8936 (calibration set)

n = 17, R2 = 0.9672, s = 5.42 (validation set) (5)

Distribution 2

Yd1/2 = 8.5681 (±0.1480) + 7.4133 (±0.0109) ∗ DCW(1, 17)

n = 39, R2 = 0.9934, q2 = 0.9929, s = 3.33, F = 5546 (sub-training set)

n = 18, R2 = 0.9606, s = 8.38, R2
m = 0.9359 (calibration set)

n = 15, R2 = 0.9645, s = 5.67 (validation set) (6)

Distribution 3

Yd,1/2 = 7.7177 (±0.3077) + 11.2679 (±0.0460) ∗ DCW(1, 7)

n = 36, R2 = 0.9924, q2 = 0.9911, s = 3.97, F = 4448 (sub-training set)

n = 19, R2 = 0.9512, s = 6.47, R2
m = 0.8739 (calibration set)

n = 17, R2 = 0.9630, s = 4.68 (validation set) (7)

Distribution 4

Yd,1/2 = 3.2738 (±0.1491) + 6.2741 (±0.0063) ∗ DCW(1, 17)

n = 33, R2 = 0.9962, q2 = 0.9959, s = 2.99, F = 8093 (sub-training set)

n = 21, R2 = 0.9183, s = 7.19, R2
m = 0.9165 (calibration set)

n = 18, R2 = 0.9872, s = 3.08 (validation set) (8)
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Fig. 2 Graphical representation of models calculated with Eqs. 5, 6, 7, and 8

In Eqs. 5–8: n is the number of polymers in a set (i.e. in sub-training, calibration,
and external validation sets); R2 is the correlation coefficient; q2 is cross-validated
R2; s is the root-mean-square error; F is Fischer F-ratio; and R2

m is the metric of the
predictability [22]: a model has predictive potential, if R2

m > 0.5 [22].
Figure 2 shows the graphical representation of models calculated with Eqs. 5, 6, 7,

and 8.
Table 2 contains the correlation weights for calculation of optimal descriptors for

models computed with Eqs. 5, 6, 7, and 8. One can see from Table 2, that there
are three classes of the SMILES-atoms: (i) stable promoters of endpoint increase
(all CWs > 0); (ii) stable promoters of endpoint decrease (all CWs < 0); and (iii)
SMILES-atoms with unclear role, which have both positive and negative correlation
weights for different distributions (Table 2). Thus, suggested model has mechanistic
interpretation: the presence of double (‘=’) and triple (‘#’) covalent bonds is promoter
of increase for Yd,1/2; vice versa the presence of bromine (‘Br’), sulphur (‘S’ and ‘s’),
and nitrogen (‘N’ and ‘n’) is promoter of decrease for Yd,1/2. It is to be noted that in
the case of distribution 1, the list of SMILES-atoms which are involved in building
up model is shorter than the lists of SMILES-atoms involved in building up model
for the distributions 2, 3, and 4. It indicates that distribution into the “visible” sub-
training and calibration sets and the “invisible” external validation set can modify the
statistical quality of a QSPR model. Thus, a QSPR model represents a random event,
but the statistical quality of a model is a mathematical function of the distribution into
the ”visible” and ”invisible” sets. Table 3 contains experimental and calculated values
of the molar thermal decomposition function and four distributions into the ”visible”
(sub-training and calibration) and “invisible” (validation) sets.

123



1178 J Math Chem (2014) 52:1171–1181

Table 2 The numerical data on the correlation weights for calculation with Eq. 1 which were obtained by
the Monte Carlo method for distributions 1, 2, 3, and 4

Distribution 1 Distribution 2 Distribution 3 Distribution 4

Sk CW ∗ (S)k Sk CW ∗ (S)k Sk CW ∗ (S)k Sk CW ∗ (S)k

# −0.00244 # −1.45313 # 0.0 # −0.76262

( 0.04600 ( 0.07713 ( 0.09675 ( 0.17387

1 0.12856 1 −0.05850 1 −0.05088 1 0.08875

2 0.68525 2 0.63963 2 0.46475 2 0.68950

3 −0.94250 3 0.0 3 0.60938

= −0.24288 = −1.14262 = −0.60438 = −0.35838

@@ −0.13863 @@ 0.0 @@ −1.48438 @@ 0.0

C 0.77431 C 1.23338 C 0.82613 C 1.40625

F 1.07431 F 1.72275 F 0.78425 F 1.89162

H 0.25125 H 0.0 H −0.63563 H 0.0

Br 3.26763 Br 4.88000 Br 3.21475 Br 5.61037

Cl 1.08550 Cl 2.07313 Cl 1.06150 Cl 1.88663

N 0.56250 N 2.49600 N 1.46475 N 1.93450

O 0.65525 O 1.23738 O 0.62200 O 1.01163

S 2.74050 S 4.40625 S 2.80850 S 3.83875

Si 1.63000 Si 1.03425 Si 3.92587

[ −0.04531 [ 1.82613 [ 0.95512 [ 1.00100

c 0.61037 c 1.04787 c 0.65625 c 1.12500

n 3.73038 n 0.0 n 1.60538

s 2.66675 s 4.22075 s 3.03125 s 5.02625

The statistical quality of the model suggested in work [6] calculated with quantum
mechanics descriptors is the following: n = 53, R2 = 0.9814, s = 5.13 (training set);
and n = 17, R2 = 0.9685, s = 5.66 (validation set). Thus the statistical quality of the
models calculated with Eqs. 5, 6, 7, and 8 is very similar. However, the models calcu-
lated with Eqs. 3–6 are based on topology of monomers, without data on the quantum
mechanics descriptors. The additional validation of the approach with three distribu-
tions into the “visible” sub-training and calibration sets together with the “invisible”
external validation set has shown that statistical quality of the SMILES-based models
remains quite good, even with two outliers (compounds #54 and #55 in Tables 1 and
3) which were removed from the consideration in the previous study [6].

4 Conclusions

The current study reports novel QSAR for the thermal decomposition of polymers.
Here monomers’ structures represented by simplified molecular input-line entry sys-
tem are used to represent polymers. The suggested approach provides accurate descrip-
tions of the investigated characteristics and can be useful alternative of the modeling
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Table 3 The numerical data on the molar thermal decomposition for 72 polymers

ID Distributionsa Yd,1/2, K × kg × mol−1

1 2 3 4 Experiment Equation 3 Equation 4 Equation 5 Equation 6

1 C S C S 87.5 86.9 85.4 83.6 85.8

2 C S V V 34.5 37.4 37.8 38.0 36.0

3 C S V S 44.9 46.1 47.0 47.3 44.8

4 S C S C 55.6 58.0 55.7 57.9 56.1

5 C S S C 54.1 46.7 51.4 47.8 46.7

6 C S S S 63.1 64.4 66.4 68.1 64.7

7 S C S C 101.9 95.6 93.0 96.3 93.4

8 S S S C 63.8 63.4 65.3 65.9 62.5

9 S S V C 61.0 67.6 64.4 67.1 66.1

10 S S V V 57.6 60.4 58.0 59.0 59.9

11 S V V S 73.5 76.7 75.1 75.5 75.4

12 C S S S 54.3 69.7 63.9 62.9 61.7

13 S S C S 46.6 46.5 46.2 41.6 46.8

14 S S V V 75.6 75.0 75.6 76.4 75.3

15 S S S C 75.7 75.0 75.6 76.4 75.3

16 S S C S 83.2 82.3 84.7 83.4 81.7

17 S S C C 79.2 78.5 81.8 79.1 78.3

18 S C S C 79.3 78.5 81.8 79.1 78.3

19 C V S C 103.1 103.0 102.6 103.3 101.7

20 S S S S 101.5 103.0 105.3 108.7 106.2

21 S C S V 62.4 60.4 58.0 59.0 59.9

22 C C S S 81.4 77.7 76.3 77.6 77.6

23 S S S V 70.4 70.1 68.3 70.5 71.0

24 S S C C 86.5 87.4 86.6 89.1 88.6

25 S C S C 88.7 88.7 114.8 88.9 103.3

26 C S S V 89.4 87.4 86.6 89.1 88.6

27 S C V S 107.6 104.8 104.8 107.7 106.2

28 S V V S 103.9 107.6 104.0 106.6 107.4

29 S V S V 108.3 104.8 104.8 107.7 106.2

30 S C S S 109.4 105.3 104.9 104.4 105.6

31 S C S C 127.2 122.1 123.1 126.4 123.9

32 C V V C 78.0 77.4 77.4 77.5 77.3

33 C S V C 35.0 39.8 39.0 42.5 40.7

34 S S S C 35.5 36.0 29.3 33.5 36.3

35 S S S S 37.2 38.7 37.8 40.3 38.5

36 C C C S 43.7 43.0 39.7 40.4 42.3

37 S S C C 44.2 46.0 46.7 59.0 48.0
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Table 3 continued

ID Distributionsa Yd,1/2, K × kg × mol−1

1 2 3 4 Experiment Equation 3 Equation 4 Equation 5 Equation 6

38 S S C S 51.7 52.7 50.0 51.9 53.3

39 C V V S 70.2 61.4 59.1 61.2 62.1

40 S S S C 63.7 64.9 65.3 63.9 65.1

41 S V C C 43.4 42.0 49.0 49.9 48.1

42 S V S S 54.7 57.1 57.2 61.1 58.3

43 S S V C 45.3 44.4 39.7 42.7 44.8

44 C S C V 46.7 47.4 47.0 49.6 47.3

45 S V C V 56.1 56.1 56.1 58.9 56.1

46 S S S S 61.1 60.7 61.3 62.7 53.8

47 S S V S 69.3 67.7 66.9 77.7 69.5

48 S S S S 80.0 80.4 79.9 82.1 79.6

49 C S S C 88.0 72.1 78.9 78.8 64.8

50 C S S C 100.6 95.6 94.6 92.9 94.6

51 S S C S 112.8 114.5 114.1 113.1 113.1

52 S V S V 138.6 139.3 136.3 135.2 133.7

53 S S S S 281.6 283.7 281.2 285.0 281.5

54b – S S S 88.3 – 88.4 87.2 88.9

55b – C S S 162.0 – 176.0 161.5 162.5

56 V V S S 33.9 33.5 34.9 33.7 32.7

57 V C V S 19.2 20.4 18.4 19.5 18.7

58 V V C V 46.6 51.7 48.8 49.7 51.1

59 V S C V 70.6 76.3 73.5 76.4 74.9

60 V V S S 24.1 28.7 8.7 28.7 27.2

61 V S S S 76.9 70.9 75.6 76.7 75.7

62 V C S S 101.3 108.0 105.8 105.0 101.2

63 V S C S 135.1 122.7 136.2 121.9 135.2

64 V S S V 66.3 65.2 65.3 64.9 64.3

65 V C V V 66.1 5.0 75.6 76.4 75.3

66 V C C V 51.7 51.7 48.8 49.7 51.1

67 V S V V 61.0 61.4 59.1 61.2 62.1

68 V C C S 27.8 30.1 28.7 31.0 29.7

69 V C S V 30.5 33.4 32.3 30.5 32.7

70 V C C V 38.4 36.3 36.4 47.5 37.0

71 V V C S 67.7 58.4 85.2 57.5 67.3

72 V V V S 74.6 75.0 75.6 76.4 75.3

a S = sub-training set; C = calibration set; and V = validation set
b Polymers #54 and #55 are outliers in work [6]
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the thermal decomposition of polymers using the quantum mechanics descriptors sug-
gested in the literature [6].
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